次のように作成した18個のデータに対して、母分散が未知の場合の母平均の99%信頼区間を求めよ。

> set.seed(学籍番号)

> x <- round(rnorm(18,34,5.5),digits=1)

解答例:学籍番号が1623200の場合

データから標本平均・標本分散を求めると

> set.seed(1825200)

> x <- round(rnorm(18,34,5.5),digits=1)

> mean(x)

[1] 35.26111

> var(x)

[1] 53.20958

> sd(x)

[1] 7.294489

 \leftarrow 標本標準偏差 s

> length(x)

[1] 18

 \leftarrow データの数 n

母分散 σ^2 が未知なので、

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} = \frac{\bar{X} - \mu}{\sqrt{\frac{S^2}{n}}}$$

で変換すると、T は自由度 17(=18-1) の t 分布に従うことがわかる。ここで、

$$\Pr\{-t_{\alpha} \le T \le t_{\alpha}\} = 0.99 = 1 - 0.01$$

となる t_{α} を R を使って求めると

であることが求められる。以上のことから、母平均 μ の95%信頼区間は

$$-2.898 \le \frac{35.26 - \mu}{\frac{7.294}{\sqrt{18}}} \le 2.898$$
$$35.26 - 2.898 \times \frac{7.294}{\sqrt{18}} \le \mu \le 35.26 + 2.898 \times \frac{7.294}{\sqrt{18}}$$
$$30.277 \dots \le \mu \le 40.242 \dots$$
$$30.3 \le \mu \le 40.2$$

であるから、[30.3, 40.2] である。R で計算する場合は

> mean(x)-qt(1-0.01/2,18-1)*sd(x)/sqrt(18)

のように求められる(上記は下限を求める式で、上限は $mean(x)+\cdots$ とすればよい)。 ちなみに 95%信頼区間は $t_{\alpha}=2.109816$ を使って [31.6,38.9] である。

注)レポートもそうであるが、途中計算がある程度分かるように解答を 書くこと!!(標本平均、標本分散、 ε_{α} の値と最初の不等式など)

学籍番号による解答一覧

学籍番号	標本平均	標本分散	下限	上限	下限 (3 桁)	上限 (3 桁)
1523051	34.51	21.04	31.3776	37.6446	31.4	37.6
1723016	34.76	22.74	31.4982	38.0129	31.5	38.0
1823019	34.21	16.85	31.4014	37.0097	31.4	37.0
1823038	34.53	19.41	31.5239	37.5428	31.5	37.5
1823058	33.68	25.81	30.2074	37.1481	30.2	37.1
1823067	32.65	22.46	29.4129	35.8871	29.4	35.9
1823068	36.89	28.92	33.2209	40.5680	33.2	40.6
1823070	32.41	29.67	28.6901	36.1321	28.7	36.1
1823072	34.32	48.17	29.5812	39.0633	29.6	39.1
1823076	34.06	14.63	31.4423	36.6688	31.4	36.7
1823091	34.57	30.01	30.8242	38.3092	30.8	38.3
1823100	31.74	32.84	27.8295	35.6594	27.8	35.7
1823102	36.89	32.00	33.0247	40.7531	33.0	40.8
1823109	33.72	28.98	30.0450	37.3995	30.0	37.4
1823131	35.28	17.31	32.4412	38.1255	32.4	38.1

・平均の区間推定(二標本の差の区間推定)

いままでは、一つの母集団に対して標本平均や標本分散の推定を行ってきたが、男女の平均の差などのように、二つの母集団の平均の差を調べたいこともある。ここでは、二つの母集団がそれぞれ母分散が等しい正規分布 $N(\mu_1,\sigma^2),N(\mu_2,\sigma^2)$ に従うとき、母平均の差 $\mu_1-\mu_2$ の区間推定を行う。

まず、2つの母集団からそれぞれ

$$(x_1, x_2, \cdots, x_n)$$
, (y_1, y_2, \cdots, y_m)

と 1 つ目の母集団から n 個、 2 つ目の母集団から m 個の標本が無作為に得られたとする。このとき母平均の差 $\mu_1-\mu_2$ の点推定は

$$\bar{x} - \bar{y} = \frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{m} \sum_{j=1}^{m} y_j$$

のように、それぞれの標本平均のを計算した差で求めることができる。次にこの点推定の値を使って区間推定を求める。正規分布の和や差が正規分布に従うことから、 $\bar{x}-\bar{y}$ も正規分布に従うことになる。実際に $\bar{x}-\bar{y}$ は母平均 $\mu_1-\mu_2$ 、母分散 $\frac{\sigma^2}{n}+\frac{\sigma^2}{m}$ の正規分布 $N(\mu_1-\mu_2,\frac{\sigma^2}{n}+\frac{\sigma^2}{m})$ に従うことが理論的にわかっている。よって、母分散が既知の場合と未知の場合で次のように区間推定を行うことができる。

・母分散が既知のとき

 $\bar{x}-\bar{y}$ が正規分布 $N(\mu_1-\mu_2,\frac{\sigma^2}{n}+\frac{\sigma^2}{m})$ に従うので、

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma^2}{n} + \frac{\sigma^2}{m}}} = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

と変換すればZが標準正規分布に従うので、前回同様に次のような z_{α} を決め、

$$\Pr\{-z_{\alpha} \le Z \le z_{\alpha}\} = 1 - \alpha$$

括弧の中の不等式に実際の値 \bar{x}, \bar{y} を代入し、 $\mu_1 - \mu_2$ について解くことで

$$-z_{\alpha} \le \frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \le z_{\alpha}$$

$$-z_{\alpha} \times \sigma \sqrt{\frac{1}{n} + \frac{1}{m}} \leq (\bar{x} - \bar{y}) - (\mu_{x} - \mu_{y}) \leq z_{\alpha} \times \sigma \sqrt{\frac{1}{n} + \frac{1}{m}}$$

$$(\bar{x} - \bar{y}) - z_{\alpha} \times \sigma \sqrt{\frac{1}{n} + \frac{1}{m}} \le \mu_x - \mu_y \le (\bar{x} - \bar{y}) + z_{\alpha} \times \sigma \sqrt{\frac{1}{n} + \frac{1}{m}}$$

のような区間推定を得る。

・母分散が未知の場合

母分散 σ^2 の代わりに標本分散 s^2 を使うことを考える。しかし標本分散の計算は母集団ごとに s_x^2, s_y^2 と 2 つ計算できるので、等分散の条件をもとに

$$s^{2} = \frac{1}{(n-1) + (m-1)} \left\{ (n-1)s_{x}^{2} + (m-1)s_{y}^{2} \right\}$$

と計算し、これを共通の母分散 σ^2 の推定量とする。これで、母分散 σ^2 のかわりに s^2 を使うことによって、

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

と変換すると t は自由度 (n-1)+(m-1) の t 分布に従うことがわかっている。後は前回同様に次のような t_{α} を求め、

$$\Pr\{-t_{\alpha} \le T \le t_{\alpha}\} = 1 - \alpha$$

確率の括弧の中身に \bar{x}, \bar{y}, s^2 を代入し $\mu_1 - \mu_2$ について解くことで

$$(\bar{x} - \bar{y}) - t_{\alpha} \times s\sqrt{\frac{1}{n} + \frac{1}{m}} \le \mu_x - \mu_y \le (\bar{x} - \bar{y}) + t_{\alpha} \times s\sqrt{\frac{1}{n} + \frac{1}{m}}$$

のような区間推定を得る。

例. 二標本の差の区間推定

ある工場で作られた電球7個の寿命を調べたところ、下記のような結果を得た。

また、これとは別の工場で作られた電球6個の寿命を調べたところ下記のようであった。

このとき、母平均の差 $\mu_x - \mu_y$ の95%信頼区間を求めよ。

解答例)

標本平均と標本分散を計算すると、

$$> x < -c(76.5, 82.4, 93.0, 78.7, 86.6, 94.2, 82.9)$$

$$> y < -c(77.7, 69.5, 79.6, 68.2, 71.4, 67.4)$$

> cbind(mean(x),mean(y))

$$[,1]$$
 $[,2]$

[1,] 84.9 72.3

> cbind(var(x),var(y))

$$[,1]$$
 $[,2]$

[1,] 45.70667 26.384

> cbind(sd(x),sd(y))

$$[,1] \qquad [,2]$$

[1,] 6.76067 5.136536

となるので、標本平均や標本分散は次のようになる。

標本平均 $\bar{x} = 84.9$ 、標本分散 $s_x^2 = 45.7$ 、標本標準偏差 $s_x = 6.76$

標本平均 $\bar{y} = 72.3$ 、標本分散 $s_y^2 = 26.4$ 、標本標準偏差 $s_y = 5.14$

母分散が未知なので、共通の母分散の推定量 s^2 を求めると

$$s^{2} = \frac{1}{(7-1) + (6-1)} \{ (7-1) \times 45.70667 + (6-1) \times 26.384 \}$$
$$= \frac{1}{11} (274.24 + 131.92) = 36.92364 \quad (s = 6.076483)$$

となる。また、

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

と変換すると、T は自由度 (7-1)-(6-1)=11 の t 分布に従うことになる。

したがって、 $\Pr\{-t_{\alpha} \le T \le t_{\alpha}\} = 0.95 = 1 - 0.05$ となる t_{α} は

$$qt(1-0.05/2,11) = 2.200985$$

となる。よって母平均の95%信頼区間は

$$-2.200985 \le \frac{(84.9 - 72.3) - (\mu_x - \mu_y)}{(6.076483) \times \sqrt{\frac{1}{7} + \frac{1}{6}}} \le 2.200985$$

の不等式を解いて、

$$-2.200985 \times 6.076483 \times \sqrt{\frac{13}{42}} \le 12.6 - (\mu_x - \mu_y) \le 2.200985 \times 6.076483 \times \sqrt{\frac{13}{42}}$$
$$12.6 - 7.440745 \le \mu_x - \mu_y \le 12.6 + 7.440745$$
$$5.159255 \le \mu_x - \mu_y \le 20.04075$$
$$5.16 \le \mu_x - \mu_y \le 20.0$$

と求められる。

ちなみに下記のようにして求めることも可能

$$> s <- sqrt((6*var(x)+5*var(y))/(6+5))$$

> s

[1] 6.076482

 $> s^2$

[1] 36.92364

> (84.9-72.3)-2.200985*6.076483*sqrt(1/7+1/6)

[1] 5.159256

> (84.9-72.3)+2.200985*6.076483*sqrt(1/7+1/6)

[1] 20.04074

もしくは

$$> (mean(x)-mean(y))-qt(1-0.05/2,6+5)*s*sqrt(1/7+1/6)$$

[1] 5.159256

> (mean(x)-mean(y))+qt(1-0.05/2,6+5)*s*sqrt(1/7+1/6)

[1] 20.04074

・母分散が未知の場合の母平均の区間推定

次のように作成したxが9個,yが10個のデータに対して、母分散の値が共通で未知 と仮定したとき、母平均の差の95%信頼区間を求めよ。

- > set.seed(学籍番号)
- > x <- round(rnorm(9,15,3.5),digits=1)
- > y <- round(rnorm(10,17,3.5),digits=1)</pre>
- 注)xの1番目のデータとyの10番目のデータは裏面で確認すること

2019年度神奈川工科大学	学科	学年	組	学	籍	番	号	氏	名
数理統計学									
演習問題									

提出先: K3-3309 号室前 20番のボックス 提出期限: 11月25日(月)17時頃まで

学籍番号別:データの確認

学籍番号	x[1]	y[10]
1825200	16.0	16.2
1523051	16.9	20.4
1723016	11.9	20.5
1823019	18.1	12.0
1823038	19.0	17.3
1823058	12.3	11.5
1823067	17.6	23.2
1823068	17.8	17.4
1823070	9.7	24.0
1823072	22.2	15.2
1823076	16.2	15.6
1823091	16.2	18.4
1823100	13.6	21.3
1823102	14.1	14.4
1823109	20.9	20.8
1823131	22.1	21.4