・母分散が既知の場合の区間推定

母集団が母分散 $\sigma^2 = 5.00^2$ の正規分布に従うとき、 7 つのデータ 52.3, 55.9, 64.6, 53.9, 61.2, 51.5, 59.6

が与えられたときの母平均μの99%信頼区間を次の通り求めよ。

(1) 関数電卓を使い標本平均 \bar{x} , 標本分散 s^2 , 標本標準偏差 s を求めよ。 標本平均 \bar{x} と標本分散 s^2 を求めると、

$$\bar{x} = \frac{52.3 + 55.9 + 64.6 + 53.9 + 61.2 + 51.5 + 59.6}{7} = \frac{399.0}{7} = 57.0$$

$$s^2 = \frac{1}{7 - 1} \left(22888.32 - 7 \times 57.0^2 \right) = \frac{145.32}{6} = 24.22 \ (= 24.2)$$

$$s = 4.9213 \cdots \ (= 4.92)$$

解答は有効数字3桁以上なので、 $\bar{x}=57$ の場合、2桁になるため減点対象になります

(2) t 分布の表を用いて母分散が未知の場合の99%信頼区間を求めよ。

母分散が $\sigma^2=(5.00)^2$ と既知なので $Z=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ を使って変換すると Z は標準正規分布 N(0,1) に従うので、 $P(-z_{\alpha}< Z< z_{\alpha})=0.99=1-0.01$ となる z_{α} は 2.576 である。

つまり信頼区間は

$$-2.576 \le \frac{57.0 - \mu}{\frac{5.00}{\sqrt{7}}} \le 2.576$$

を満たせばよいので、この不等式をμについて解くと、

$$-2.576 \times \frac{5.00}{\sqrt{7}} \le 57.0 - \mu \le 2.576 \times \frac{5.00}{\sqrt{7}}$$
$$57.0 - 2.576 \times \frac{5.00}{\sqrt{7}} \le \mu \le 57.0 + 2.576 \times \frac{5.00}{\sqrt{7}}$$
$$57.0 - 4.86818 \dots \le \mu \le 57.0 + 4.86818 \dots$$
$$52.13182 \dots \le \mu \le 61.86818 \dots$$

となる。したがって、有効数字 3 桁で答えると $52.1 \le \mu \le 61.9$ または [52.1,61.9] となる。 ちなみに 95%信頼区間は $\varepsilon=1.960$ を使って $53.3 \le \mu \le 60.7$ となります。

- 注)途中計算は有効数字より1~2桁多めに計算した方が良い。
- お詫び)演習のプリントの信頼区間の確率が99%と95%の両方が記載されていました。 採点は両方〇にしてあります。

- ·母平均μに関する区間推定
- ・母分散が未知の場合

基本的には母分散既知と同じ考え方であるが、母分散が未知のため σ の値を使うZでの変換ができない。そこで母分散 σ^2 の代わりに標本分散 σ^2 を使って

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

と変換を行う。このt は標準正規分布ではなく、自由度n-1のt分布に従うことが知られている。そこで $100(1-\alpha)$ %の信頼区間を求める場合、

$$P(-t_{\alpha} \le T \le t_{\alpha}) = 1 - \alpha$$

になるように t_{α} を決める。この t_{α} は表をつかって求めることになる。

確率の括弧の中身は母分散既知のときと同様に

$$-t_{\alpha} \le \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \le t_{\alpha} \quad \Rightarrow \quad \bar{x} - t_{\alpha} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha} \times \frac{s}{\sqrt{n}}$$

と変形できるので、 $(\bar{x}-t_{\alpha}\times\frac{s}{\sqrt{n}},\bar{x}+t_{\alpha}\times\frac{s}{\sqrt{n}})$ の間に真の平均 μ が入っている確率は、事前に決めた確率となる。

例. 母集団が母分散未知の正規分布に従うとする。そこから無作為に 10 個のデータが得られ、標本平均が 17.44、標本分散が $(2.95)^2$ だったとする。このとき、母平均 μ の 99%信頼区間を求めよ。

母分散が未知なので、tをつかって変換すると、

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

が自由度 10-1=9 の t 分布に従う。よって、 $P(-t_{\alpha} \le T \le t_{\alpha}) = 0.99 = 1-0.01$ となる t_{α} を両側 $100\alpha\%$ の t 分布の表から求めると、自由度 9 で確率 1-0.99 = 0.01 の部分の値を調べればよいので、 $t_{\alpha} = 3.2498$ であることがわかる。よって母平均の 99%信頼区間は

$$-3.2498 \le \frac{17.44 - \mu}{\frac{2.95}{\sqrt{10}}} \le 3.2498$$

を満たせばよいので、この不等式を μ について解くと、

$$17.44 - 3.2498 \times \frac{2.95}{\sqrt{10}} \le \mu \le 17.44 + 3.2498 \times \frac{2.95}{\sqrt{10}}$$

$$14.4083\dots \le \mu \le 20.4716\dots$$

である。つまり、母平均の 99%信頼区間を有効数字 3 桁 で答えると (14.4, 20.5) となる。

自由度 m の t 分布の両側 $100\alpha\%$ 点

日田及 m の t カ n の画関 100α / 0 点										
m	0.10	0.05	0.02	0.01						
1	6.3137	12.706	31.821	63.656						
2	2.9200	4.3027	6.9645	9.9250						
3	2.3534	3.1824	4.5407	5.8408						
4	2.1318	2.7765	3.7469	4.6041						
5	2.0150	2.5706	3.3649	4.0321						
6	1.9432	2.4469	3.1427	3.7074						
7	1.8946	2.3646	2.9979	3.4995						
8	1.8595	2.3060	2.8965	3.3554						
9	1.8331	2.2622	2.8214	3.2498						
10	1.8125	2.2281	2.7638	3.1693						

・母分散が未知の場合の区間推定

母集団が母分散未知の正規分布に従うとき、7つのデータ 72.3, 77.9, 67.3, 73.9, 65.0, 70.1, 79.6

が与えられたときの母平均 μ の95%信頼区間を次の通り求めよ。

- (1) 関数電卓を使い標本平均 \bar{x} , 標本分散 s^2 , 標本標準偏差 s を求めよ。
- (2) t 分布の表を用いて母分散が未知の場合の 95%信頼区間を求めよ。

2019年度神奈川工科大学	学科	学年	組	学	籍	番	号	氏	名
確率統計									
演習問題									

提出先: K3-3309 号室前 17番のボックス 提出期限: 11月13日(水)17時頃まで